Signal transduction of mechanical stresses in the vascular wall.
نویسندگان
چکیده
The vascular wall is constantly subjected to a variety of mechanical forces in the form of stretch (tensile stress), due to blood pressure, and shear stress, due to blood flow. Alterations in either of these stresses are known to result in vascular remodeling, an adaptation characterized by modified morphology and function of the blood vessels, allowing the vessels to cope with physiological or pathological conditions. The processes involved in vascular remodeling include cellular hypertrophy and hyperplasia, as well as enhanced protein synthesis or extracellular matrix protein reorganization. In vitro studies using vascular cells have attempted to identify the mechanisms behind structural alterations. Possible pathways include ion channels, integrin interaction between cells and the extracellular matrix, activation of various tyrosine kinases (such as c-Src, focal adhesion kinase, and mitogen-activated protein kinases), and autocrine production and release of growth factors. These pathways lie upstream of de novo synthesis of immediate response genes and total protein synthesis, both of which are likely to be involved in the process of vascular remodeling.
منابع مشابه
Activation of PDGF receptor alpha in vascular smooth muscle cells by mechanical stress.
Hypertension increases mechanical force on the arterial wall by as much as 30%, resulting in marked alterations in signal transductions and gene expression in vascular smooth muscle cells (VSMCs) that contribute to matrix protein synthesis, cell proliferation, and differentiation. How the mechanical stimuli are converted into a biological signal in cells has yet to be studied. We investigated t...
متن کاملMetalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملEarly Expression of Myocardial HIF-1 in Response to Mechanical Stresses Regulation by Stretch-Activated Channels and the Phosphatidylinositol 3-Kinase Signaling Pathway
Vascular endothelial growth factor (VEGF) expression is upregulated by hypoxia-inducible factor-1 (HIF-1) in ischemic tissues and growing tumors. Normally, HIF-1 activity depends on the amount of HIF-1 subunit, which is tightly regulated by the oxygen tension. In the myocardium, VEGF expression has been shown to be induced under nonhypoxic conditions by mechanical stresses. However, the cellula...
متن کاملThe Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملThe Expression of Signal Regulatory Protein-alpha in Normal and Osteoarthritic Human Articular Cartilage and Its Involvement in Chondrocyte Mechano-transduction Response
Signal regulatory proteins (SIRP) belong to immunoglobulin super family (IgSF) and relate to integrin signaling cascades. It has been shown that SIRPa is expressed in a variety of cells including myeloid cells and neurons. In the present study the expression of this IgSF member in articular chondrocytes was investigated. Methods: Using a panel of anti-SIRPalpha antibodies, immunohistochemistry...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 32 2 شماره
صفحات -
تاریخ انتشار 1998